Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid

Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection

Oluwasesan Adegoke, Enoch Y. Park (Lead / Corresponding author)

Research output: Contribution to journalArticle

2 Citations (Scopus)
4 Downloads (Pure)

Abstract

In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four negatively charged thiol-functionalized AuNPs, thioglycolic (TGA)-AuNPs, 3-mercaptopropionic acid (MPA)-AuNPs, L-cysteine-AuNPs and L-glutathione (GSH)-AuNPs, and a cationic cyteamine-capped AuNPs was studied at various pHs, ionic strength, and NP concentration. A strong dependence of the ZP charge on the nanoparticle (NP) concentration was observed. High colloidal stability was exhibited between pH 3 and 9 for the negatively charged AuNPs and between pH 3 and 7 for the cationic AuNPs. With respect to the ionic strength, high colloidal stability was exhibited at ≤104 μM for TGA-AuNPs, L-cysteine-AuNPs, and GSH-AuNPs, whereas ≤103 μM is recommended for MPA-AuNPs. For the cationic AuNPs, very low ionic strength of ≤10 μM is recommended due to deprotonation at higher concentration. GSH-AuNPs were thereafter bonded to SiO2-functionalized alloyed CdZnSeS/ZnSe1.0S1.3 quantum dots (SiO2-Qdots) to form a plasmon-enhanced AuNP-SiO2-Qdots fluorescent nanohybrid. The AuNP-SiO2-Qdots conjugate was afterward conjugated to a molecular beacon (MB), thus forming an ultrasensitive LSPR-induced SiO2-Qdots-MB biosensor probe that detected a perfect nucleotide DNA sequence at a concentration as low as 10 fg/mL. The limit of detection was ~11 fg/mL (1.4 fM) while the biosensor probe efficiently distinguished between single-base mismatch and noncomplementary sequence target.

Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalNanoscale Research Letters
Volume11
Issue number523
DOIs
Publication statusPublished - 25 Nov 2016

Fingerprint

beacons
Surface plasmon resonance
surface plasmon resonance
Gold
Semiconductor quantum dots
DNA
3-Mercaptopropionic Acid
deoxyribonucleic acid
Ionic strength
quantum dots
bioinstrumentation
Biosensors
gold
Nanoparticles
nanoparticles
cysteine
Zeta potential
Cysteine
Deprotonation
acids

Cite this

@article{4590f68916004155b4e5af131104bd9c,
title = "Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid: Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection",
abstract = "In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four negatively charged thiol-functionalized AuNPs, thioglycolic (TGA)-AuNPs, 3-mercaptopropionic acid (MPA)-AuNPs, L-cysteine-AuNPs and L-glutathione (GSH)-AuNPs, and a cationic cyteamine-capped AuNPs was studied at various pHs, ionic strength, and NP concentration. A strong dependence of the ZP charge on the nanoparticle (NP) concentration was observed. High colloidal stability was exhibited between pH 3 and 9 for the negatively charged AuNPs and between pH 3 and 7 for the cationic AuNPs. With respect to the ionic strength, high colloidal stability was exhibited at ≤104 μM for TGA-AuNPs, L-cysteine-AuNPs, and GSH-AuNPs, whereas ≤103 μM is recommended for MPA-AuNPs. For the cationic AuNPs, very low ionic strength of ≤10 μM is recommended due to deprotonation at higher concentration. GSH-AuNPs were thereafter bonded to SiO2-functionalized alloyed CdZnSeS/ZnSe1.0S1.3 quantum dots (SiO2-Qdots) to form a plasmon-enhanced AuNP-SiO2-Qdots fluorescent nanohybrid. The AuNP-SiO2-Qdots conjugate was afterward conjugated to a molecular beacon (MB), thus forming an ultrasensitive LSPR-induced SiO2-Qdots-MB biosensor probe that detected a perfect nucleotide DNA sequence at a concentration as low as 10 fg/mL. The limit of detection was ~11 fg/mL (1.4 fM) while the biosensor probe efficiently distinguished between single-base mismatch and noncomplementary sequence target.",
author = "Oluwasesan Adegoke and Park, {Enoch Y.}",
year = "2016",
month = "11",
day = "25",
doi = "10.1186/s11671-016-1748-3",
language = "English",
volume = "11",
pages = "1--12",
journal = "Nanoscale Research Letters",
issn = "1931-7573",
publisher = "Springer Verlag",
number = "523",

}

Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid : Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection. / Adegoke, Oluwasesan; Park, Enoch Y. (Lead / Corresponding author).

In: Nanoscale Research Letters, Vol. 11, No. 523, 25.11.2016, p. 1-12.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid

T2 - Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection

AU - Adegoke, Oluwasesan

AU - Park, Enoch Y.

PY - 2016/11/25

Y1 - 2016/11/25

N2 - In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four negatively charged thiol-functionalized AuNPs, thioglycolic (TGA)-AuNPs, 3-mercaptopropionic acid (MPA)-AuNPs, L-cysteine-AuNPs and L-glutathione (GSH)-AuNPs, and a cationic cyteamine-capped AuNPs was studied at various pHs, ionic strength, and NP concentration. A strong dependence of the ZP charge on the nanoparticle (NP) concentration was observed. High colloidal stability was exhibited between pH 3 and 9 for the negatively charged AuNPs and between pH 3 and 7 for the cationic AuNPs. With respect to the ionic strength, high colloidal stability was exhibited at ≤104 μM for TGA-AuNPs, L-cysteine-AuNPs, and GSH-AuNPs, whereas ≤103 μM is recommended for MPA-AuNPs. For the cationic AuNPs, very low ionic strength of ≤10 μM is recommended due to deprotonation at higher concentration. GSH-AuNPs were thereafter bonded to SiO2-functionalized alloyed CdZnSeS/ZnSe1.0S1.3 quantum dots (SiO2-Qdots) to form a plasmon-enhanced AuNP-SiO2-Qdots fluorescent nanohybrid. The AuNP-SiO2-Qdots conjugate was afterward conjugated to a molecular beacon (MB), thus forming an ultrasensitive LSPR-induced SiO2-Qdots-MB biosensor probe that detected a perfect nucleotide DNA sequence at a concentration as low as 10 fg/mL. The limit of detection was ~11 fg/mL (1.4 fM) while the biosensor probe efficiently distinguished between single-base mismatch and noncomplementary sequence target.

AB - In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four negatively charged thiol-functionalized AuNPs, thioglycolic (TGA)-AuNPs, 3-mercaptopropionic acid (MPA)-AuNPs, L-cysteine-AuNPs and L-glutathione (GSH)-AuNPs, and a cationic cyteamine-capped AuNPs was studied at various pHs, ionic strength, and NP concentration. A strong dependence of the ZP charge on the nanoparticle (NP) concentration was observed. High colloidal stability was exhibited between pH 3 and 9 for the negatively charged AuNPs and between pH 3 and 7 for the cationic AuNPs. With respect to the ionic strength, high colloidal stability was exhibited at ≤104 μM for TGA-AuNPs, L-cysteine-AuNPs, and GSH-AuNPs, whereas ≤103 μM is recommended for MPA-AuNPs. For the cationic AuNPs, very low ionic strength of ≤10 μM is recommended due to deprotonation at higher concentration. GSH-AuNPs were thereafter bonded to SiO2-functionalized alloyed CdZnSeS/ZnSe1.0S1.3 quantum dots (SiO2-Qdots) to form a plasmon-enhanced AuNP-SiO2-Qdots fluorescent nanohybrid. The AuNP-SiO2-Qdots conjugate was afterward conjugated to a molecular beacon (MB), thus forming an ultrasensitive LSPR-induced SiO2-Qdots-MB biosensor probe that detected a perfect nucleotide DNA sequence at a concentration as low as 10 fg/mL. The limit of detection was ~11 fg/mL (1.4 fM) while the biosensor probe efficiently distinguished between single-base mismatch and noncomplementary sequence target.

U2 - 10.1186/s11671-016-1748-3

DO - 10.1186/s11671-016-1748-3

M3 - Article

VL - 11

SP - 1

EP - 12

JO - Nanoscale Research Letters

JF - Nanoscale Research Letters

SN - 1931-7573

IS - 523

ER -