Resistance to TGF-beta1 correlates with a reduction of TGF-beta type II receptor expression in Burkitt's lymphoma and Epstein-Barr virus-transformed B lymphoblastoid cell lines

Gareth J. Inman, Martin J. Allday

    Research output: Contribution to journalArticle

    45 Citations (Scopus)

    Abstract

    The pleiotropic cytokine TGF-beta1 is a member of a large family of related factors involved in controlling cell proliferation, differentiation and apoptosis. TGF-beta ligands interact with a complex of type I and type II transmembrane serine/threonine kinases and they transmit their signals to the nucleus via a family of Smad proteins. A panel of over 20 Burkitt's lymphoma (BL) cell lines has been compiled including those that are Epstein-Barr virus (EBV) negative, those that carry EBV with a restricted pattern of EBV latent gene expression (group I) and those that express the full range of latent EBV genes (group III), together with selected EBV-transformed lymphoblastoid cell lines (LCLs). Most of the EBV-negative and group I BL cell lines underwent apoptosis or a G(1) arrest in response to TGF-beta1 treatment. In contrast, group III cell lines and LCLs were completely refractory to these effects of TGF-beta1. All of the cell lines expressed the TGF-beta pathway Smads and the TGF-beta type I receptor. Lack of responsiveness to TGF-beta1 appears to correlate with a down-regulation of TGF-beta type II receptor expression. Studies of EBV-converted and stably transfected BL cell lines demonstrated that the EBV gene LMP-1 is neither necessary nor sufficient to block the TGF-beta1 response.
    Original languageEnglish
    Pages (from-to)1567-78
    Number of pages12
    JournalJournal of General Virology
    Volume81
    Issue number6
    Publication statusPublished - 2000

    Fingerprint

    Transforming Growth Factor beta1
    Burkitt Lymphoma
    Human Herpesvirus 4
    Cell Line
    Transforming Growth Factor beta
    Smad Proteins
    Apoptosis
    Transformed Cell Line
    transforming growth factor-beta type II receptor
    Protein-Serine-Threonine Kinases
    Genes
    Cell Differentiation
    Down-Regulation
    Cell Proliferation
    Cytokines
    Ligands
    Gene Expression

    Cite this

    @article{ac7f5d62f0194e5eb72d0103d6faf2c7,
    title = "Resistance to TGF-beta1 correlates with a reduction of TGF-beta type II receptor expression in Burkitt's lymphoma and Epstein-Barr virus-transformed B lymphoblastoid cell lines",
    abstract = "The pleiotropic cytokine TGF-beta1 is a member of a large family of related factors involved in controlling cell proliferation, differentiation and apoptosis. TGF-beta ligands interact with a complex of type I and type II transmembrane serine/threonine kinases and they transmit their signals to the nucleus via a family of Smad proteins. A panel of over 20 Burkitt's lymphoma (BL) cell lines has been compiled including those that are Epstein-Barr virus (EBV) negative, those that carry EBV with a restricted pattern of EBV latent gene expression (group I) and those that express the full range of latent EBV genes (group III), together with selected EBV-transformed lymphoblastoid cell lines (LCLs). Most of the EBV-negative and group I BL cell lines underwent apoptosis or a G(1) arrest in response to TGF-beta1 treatment. In contrast, group III cell lines and LCLs were completely refractory to these effects of TGF-beta1. All of the cell lines expressed the TGF-beta pathway Smads and the TGF-beta type I receptor. Lack of responsiveness to TGF-beta1 appears to correlate with a down-regulation of TGF-beta type II receptor expression. Studies of EBV-converted and stably transfected BL cell lines demonstrated that the EBV gene LMP-1 is neither necessary nor sufficient to block the TGF-beta1 response.",
    author = "Inman, {Gareth J.} and Allday, {Martin J.}",
    year = "2000",
    language = "English",
    volume = "81",
    pages = "1567--78",
    journal = "Journal of General Virology",
    issn = "0022-1317",
    publisher = "Microbiology Society",
    number = "6",

    }

    TY - JOUR

    T1 - Resistance to TGF-beta1 correlates with a reduction of TGF-beta type II receptor expression in Burkitt's lymphoma and Epstein-Barr virus-transformed B lymphoblastoid cell lines

    AU - Inman, Gareth J.

    AU - Allday, Martin J.

    PY - 2000

    Y1 - 2000

    N2 - The pleiotropic cytokine TGF-beta1 is a member of a large family of related factors involved in controlling cell proliferation, differentiation and apoptosis. TGF-beta ligands interact with a complex of type I and type II transmembrane serine/threonine kinases and they transmit their signals to the nucleus via a family of Smad proteins. A panel of over 20 Burkitt's lymphoma (BL) cell lines has been compiled including those that are Epstein-Barr virus (EBV) negative, those that carry EBV with a restricted pattern of EBV latent gene expression (group I) and those that express the full range of latent EBV genes (group III), together with selected EBV-transformed lymphoblastoid cell lines (LCLs). Most of the EBV-negative and group I BL cell lines underwent apoptosis or a G(1) arrest in response to TGF-beta1 treatment. In contrast, group III cell lines and LCLs were completely refractory to these effects of TGF-beta1. All of the cell lines expressed the TGF-beta pathway Smads and the TGF-beta type I receptor. Lack of responsiveness to TGF-beta1 appears to correlate with a down-regulation of TGF-beta type II receptor expression. Studies of EBV-converted and stably transfected BL cell lines demonstrated that the EBV gene LMP-1 is neither necessary nor sufficient to block the TGF-beta1 response.

    AB - The pleiotropic cytokine TGF-beta1 is a member of a large family of related factors involved in controlling cell proliferation, differentiation and apoptosis. TGF-beta ligands interact with a complex of type I and type II transmembrane serine/threonine kinases and they transmit their signals to the nucleus via a family of Smad proteins. A panel of over 20 Burkitt's lymphoma (BL) cell lines has been compiled including those that are Epstein-Barr virus (EBV) negative, those that carry EBV with a restricted pattern of EBV latent gene expression (group I) and those that express the full range of latent EBV genes (group III), together with selected EBV-transformed lymphoblastoid cell lines (LCLs). Most of the EBV-negative and group I BL cell lines underwent apoptosis or a G(1) arrest in response to TGF-beta1 treatment. In contrast, group III cell lines and LCLs were completely refractory to these effects of TGF-beta1. All of the cell lines expressed the TGF-beta pathway Smads and the TGF-beta type I receptor. Lack of responsiveness to TGF-beta1 appears to correlate with a down-regulation of TGF-beta type II receptor expression. Studies of EBV-converted and stably transfected BL cell lines demonstrated that the EBV gene LMP-1 is neither necessary nor sufficient to block the TGF-beta1 response.

    M3 - Article

    VL - 81

    SP - 1567

    EP - 1578

    JO - Journal of General Virology

    JF - Journal of General Virology

    SN - 0022-1317

    IS - 6

    ER -